最近,由于其对交通清算的重大影响,交通事故风险预测的问题一直引起了智能运输系统社区的关注。通过使用数据驱动的方法来对空间和时间事件的影响进行建模,因此在文献中通常可以解决此问题,因为它们被证明对于交通事故风险预测问题至关重要。为了实现这一目标,大多数方法构建了不同的体系结构以捕获时空相关性功能,从而使它们对大型交通事故数据集效率低下。因此,在这项工作中,我们提出了一个新颖的统一框架,即是上下文视觉变压器,可以通过端到端的方法进行培训,该方法可以有效地建议问题的空间和时间方面,同时提供准确的交通事故。风险预测。我们评估并比较了我们提出的方法的性能与来自两个不同地理位置的两个大规模交通事故数据集的文献的基线方法。结果表明,与文献中先前的最新作品(SOTA)相比,RMSE得分的重大改善大约为2 \%。此外,我们提出的方法在两个数据集上优于SOTA技术,而仅需要少23倍的计算要求。
translated by 谷歌翻译
由于时空事件发生的随机性,在报告的交通中断开始时缺乏信息,并且缺乏运输工程的高级方法来从过去中获得见解,因此预测交通事故持续时间是一个难题事故。本文提出了一个新的Fusion框架,用于通过将机器学习与交通流量/速度和事件描述作为功能进行集成来预测有限信息的事件持续时间,并通过多种深度​​学习方法编码(ANN AUTOCONEDER和角色级别的LSTM-ANN情绪分类器)。该论文在运输和数据科学中构建了跨学科建模方法。该方法提高了适用于基线事件报告的最佳表现ML模型的入射持续时间预测准确性。结果表明,与标准线性或支持矢量回归模型相比,我们提出的方法可以提高准确性$ 60 \%$,并且相对于混合深度学习自动编码的GBDT模型的另外7美元\%$改进,这似乎胜过表现所有其他模型。应用区是旧金山市,富含交通事件日志(全国交通事故数据集)和过去的历史交通拥堵信息(Caltrans绩效测量系统的5分钟精度测量)。
translated by 谷歌翻译